Search results for "Magnetic order"

showing 10 items of 11 documents

ChemInform Abstract: Unexpected Magnetism in Nanomaterials

2013

Conventional magnetic order in a material requires the partially filled d or f bands. The exchange interactions between the electrons in these partially filled bands give rise to a magnetic order. However, the discovery of unexpected magnetism observed in some nanomaterials, which have the d and f shells either completely empty or full, has challenged our understanding of magnetism in conventional materials. The magnetism in nanomaterials shows the effects of reduced dimensions, reduced coordination of atoms at the surface and some quantum effects which dominate at low dimensions. In this review paper we give a brief review and discuss the unexpected magnetism experimentally observed and/or…

Condensed matter physicsChemistryMagnetismMagnetic orderGeneral MedicineElectronNanomaterialsChemInform
researchProduct

Hybrid materials containing organometallic cations and 3-D anionic metal dicyanamide networks of type [Cp*2M][M′(dca)3]

2004

A new series of hybrid materials of type [Cp*2M][M′(dca)3] has been prepared by cation templation and structurally characterised (M = Fe(III), Co(III); M′ = Mn(II), Fe(II), Co(II), Ni(II), Cd(II); dca− = N(CN)2−). The crystallographic analysis of [Cp*2Fe][Cd(dca)3] showed that the [Cd(dca)3]− anionic framework is of a symmetrical 3-D α-polonium type, containing octahedral Cd nodes and μ1,5-dca bridging ligands. The [Cp*2Fe]+ cations occupy the cube-like cavities within the framework. The cationic and anionic-framework sublattices remain magnetically independent and display susceptibilities, over the range 300 to 2 K, of a Curie–Weiss nature obtained by adding a S = 1/2 (Cp*2Fe+) or a S = 0 …

Magnetic orderChemistryStereochemistryCationic polymerizationInorganic ChemistryMetalCrystallographychemistry.chemical_compoundOctahedronvisual_artRelaxation effectMössbauer spectroscopyvisual_art.visual_art_mediumHybrid materialDicyanamideDalton Trans.
researchProduct

Strain-controlled domain wall injection into nanowires for sensor applications

2021

We investigate experimentally the effects of externally applied strain on the injection of 180$^\circ$ domain walls (DW) from a nucleation pad into magnetic nanowires, as typically used for DW-based sensors. In our study the strain, generated by substrate bending, induces in the material a uniaxial anisotropy due to magnetoelastic coupling. To compare the strain effects, $Co_{40}Fe_{40}B_{20}$, $Ni$ and $Ni_{82}Fe_{18}$ samples with in-plane magnetization and different magnetoelastic coupling are deposited. In these samples, we measure the magnetic field required for the injection of a DW, by imaging differential contrast in a magneto-optical Kerr microscope. We find that strain increases t…

Materials scienceCondensed matter physics530 PhysicsNanowireNucleationGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyPhysics - Applied PhysicsApplied Physics (physics.app-ph)Coercivity021001 nanoscience & nanotechnology530 Physik01 natural sciencesMagnetic fieldMagnetizationMagnetic anisotropyCondensed Matter::Materials ScienceDomain wall (magnetism)Materials properties Magnetic hysteresis Ferromagnetic materials Magnetic anisotropy Magnetic devices Sensors Nanowires Magnetic ordering Magnetic materials0103 physical sciences010306 general physics0210 nano-technologyAnisotropy
researchProduct

The phase diagram and the magnetic structure of nuclear spins in elemental copper below 60 nK

1992

Abstract The phase diagram for nuclear magnetic order is elemental copper and the corresponding ordering vectors were investigated by neutron diffraction at nanokelvin temperatures. The intermediate phase is characterized by an ordering vector (O 2 3 2/3 . This is the first time that this type of order is observed in an fcc antiferromagnet.

Materials scienceMagnetic structureSpinsCondensed matter physicsMagnetic orderNeutron diffractionchemistry.chemical_elementCondensed Matter PhysicsCopperElectronic Optical and Magnetic MaterialschemistryPhase (matter)AntiferromagnetismElectrical and Electronic EngineeringPhase diagramPhysica B: Condensed Matter
researchProduct

The half-metallic ferromagnet

2007

Abstract Electronic structure calculation were used to predict a new material for spintronic applications. Co 2 Mn 0.5 Fe 0.5 Si is one example which is stable against on-site correlation and disorder effects due to the position of the Fermi energy in the middle of the minority band gap. Experimentally the sample were made exhibiting L 2 1 structure and a high magnetic order.

MetalMaterials scienceFerromagnetismCondensed matter physicsSpintronicsBand gapMagnetic ordervisual_artvisual_art.visual_art_mediumFermi energyElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Magnetic order in the heavy fermion system Ce(Cu1−xNix)2Ge2

1990

Abstract The magnetic phase diagram of the heavy fermion (HF) systems Ce(Cu 1−x Ni x ) 2 Ge 2 is discussed utilizing results of transport, thermodynamic and neutron-scattering measurements. While the Kondo temperature increases monotonically with x, a complex x-dependence is found for the Neel temperature, associated with a transition from local-moment to itinerant HF magnetism.

PhysicsCondensed matter physicsMagnetismMagnetic orderMonotonic functionCondensed Matter PhysicsMagnetic phase diagramElectronic Optical and Magnetic MaterialsHeavy fermionOrder (group theory)Condensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringNéel temperatureMagnetic impurityPhysica B: Condensed Matter
researchProduct

Size effect in phase transition kinetics

1988

The growth of a spontaneous lattice average magnetization in a magnetic system which is suddenly brought below the transition temperature is a stochastic process in which the very small fluctuations of the initial magnetization are amplified to a macroscopic size. The initial magnetization fluctuates in time around the zero average value because of the finite size of the system. As a consequence of the fluctuation-amplification phenomenon the nonlinear relaxation of the finite system is qualitatively different from that of the infinite one. The present paper studies this feature of phase-transition kinetics in the framework of a very simple model: the dynamical generalization of the spheric…

PhysicsPhase transition kineticsCondensed matter physicsStochastic processtheory and models of magnetic ordering; magnetic phase transitions; relaxation phenomena in magnetic systemsTransition temperatureKineticsmagnetic phase transitionsSpherical modelNonlinear systemMagnetizationLattice (order)Statistical physicstheory and models of magnetic orderingrelaxation phenomena in magnetic systems
researchProduct

Kinetics of Ordered Phases in Finite Spin Systems

1989

We study the growth of the ordered phase in a spin system of finite size suddenly brought below the transition temperature. Such a growth is driven by the instability of the mode corresponding to the largest eigenvalue of the interaction matrix. The relaxation occurs through different regimes according to whether the unstable mode has a negligible or macroscopic amplitude. One regime is characterised by dynamical scaling properties whereas in the other we can distinguish the growth to a macroscopic amplitude followed by rare transitions from one equilibrium amplitude to another. The analysis is carried out in the framework of a dynamical generalisation of the spherical model assuming non-ra…

PhysicsSpin glassCondensed matter physicsSpin polarizationSpinsRelaxation (NMR)magnetic phase transitionsCondensed Matter PhysicsInstabilitygeneral models of magnetic orderingAtomic and Molecular Physics and Opticsnumerical models of phase transitionsSpherical modelAmplitudeMathematical Physicsmagnetic phase transitions; general models of magnetic ordering; numerical models of phase transitionsSpin-½Physica Scripta
researchProduct

Electron Transfer, Linkage Isomerization, Bulk Magnetic Order, and Spin-Glass Behavior in the Iron Hexacyanomanganate Prussian Blue Analogue

1999

Prussian blueSpin glassMagnetic orderOrganic Chemistrychemistry.chemical_elementGeneral ChemistryLinkage (mechanical)ManganesePhotochemistryCatalysislaw.inventionchemistry.chemical_compoundElectron transferchemistrylawFerrimagnetismIsomerizationChemistry - A European Journal
researchProduct

Magnetic order in UCu4+xAl8−x

1992

Abstract A neutron diffraction study has been performed on UCu4+xAl8−x. The compound was chosen as an example of a uranium-based system, which goes from a magnetically ordered state to a pure heavy-fermion state. In the range x = 0.25–1, UCu4+xAl8−x orders in a simple collinear antiferromagnetic structure. With increasing concentration of Cu, the ordering temperature decreases and moment compensation develops due to the increasing hybridization of the 5f electrons.

Range (particle radiation)Materials scienceCondensed matter physicsMagnetic orderNeutron diffractionchemistry.chemical_elementElectronState (functional analysis)UraniumCondensed Matter PhysicsElectronic Optical and Magnetic MaterialschemistryMoment (physics)Antiferromagnetism
researchProduct